compute_kern¶
-
hyppo.tools.compute_kern(x, y, metric='gaussian', workers=1, **kwargs)¶ Kernel similarity matrices for the inputs.
- Parameters
x,y (
ndarray) -- Input data matrices.xandymust have the same number of samples. That is, the shapes must be(n, p)and(n, q)where n is the number of samples and p and q are the number of dimensions. Alternatively,xandycan be kernel similarity matrices, where the shapes must both be(n, n).metric (
str,callable, orNone, default:"gaussian") -- A function that computes the kernel similarity among the samples within each data matrix. Valid strings formetricare, as defined insklearn.metrics.pairwise.pairwise_kernels,['additive_chi2', 'chi2', 'linear', 'poly', 'polynomial', 'rbf', 'laplacian', 'sigmoid', 'cosine']
Note
'rbf'and'gaussian'are the same metric. Set toNoneor'precomputed'ifxandyare already similarity matrices. To call a custom function, either create the distance matrix before-hand or create a function of the formmetric(x, **kwargs)wherexis the data matrix for which pairwise kernel similarity matrices are calculated and kwargs are extra arguements to send to your custom function.workers (
int, default:1) -- The number of cores to parallelize the p-value computation over. Supply-1to use all cores available to the Process.**kwargs -- Arbitrary keyword arguments provided to
sklearn.metrics.pairwise.pairwise_kernelsor a custom kernel function.
- Returns
simx, simy (
ndarray) -- Similarity matrices based on the metric provided by the user.